New Discovery of Semiconductor Chip Heat Dissipation Hexagonal Boron Nitride Seamless Growth on the Surface of Materials

Hexagonalboron nitride, also known as white graphite, has a layered structure that is similar to graphite. It has excellent lubricity, thermal conductivity and electrical insulation, as well as chemical resistance. It is chemically inert to all forms of molten metal chemistry. The shaped article is simple to machine and has high resistance to moisture. As semiconductor chips are constantly developed, computing speeds are increasing rapidly. The problem of chip heating is becoming a major bottleneck in the development of chip technology. For high-performance electronic chip development, thermal management is crucial. After three years of work, Wei Dayun (a researcher at Fudan University's Department of Polymer Science and Polymer Molecular Engineering) made remarkable progress in the field of interface modification of FET-type dielectric substrates. This work will provide a new technology to modify dielectric substrates to address the problem of chip heat loss.

Wei Dacheng's team devised a conformal hexagonal-boron-nitride (hBN) modification technology to address the problem of chip heat. This is also known as quasi-balanced PETCVD. Wei Dacheng says that the heat dissipation of a chip is greatly limited by different interfaces. In particular, Wei Dacheng says that the interface between semiconductor and dielectric substrate close to the conductive channel plays a significant role.

Hexagonalboron nitride, which improves the interface of semiconductor and dielectric substrats, is an ideal material for dielectric substrate modification. Numerous studies show that hexagonal-boron nitride modification can reduce surface roughness and impact on carrier transport, and improve device carrier mobility. The potential use of hexagonalboron nitride for interface heat dissipation has been overlooked.


"The heating problem of a device is a key factor in carrier mobility. The lower the mobility, the more heat is generated at the same current. How to release heat determines how heat is dissipated. Wei Dacheng explained that the heat dissipation is related to how the heat is released. Conformal hexagonalboron nitride bonds to the material completely, with no gaps between the layers. Furthermore, no impurities are added to the mixture, which makes it more favorable for good results.

"In conformal hexagonal bore nitride technology that we have developed, the conformal hexagonal bore nitride is grown directly on the surface. This allows for greater mobility and thermal resistance. The maximum power density of device operation is 2 to 4x higher than the current computer CPU.


This technology offers a unique solution to chip heat dissipation and high universality. It can be used with transistor devices that are based on tungstenselende materials. The technology can also be extended to other materials and additional device applications. The PECVD technology, which was used in this research, is a common manufacturing process used in the chip manufacturing sector. This makes the conformal hexagonal bore nitride extremely attractive for large-scale production.

Future research will include the development of field-effect transistor electric materials. These will include conjugated organic molecules (Macromolecules), low-dimensional nanomaterials and research on the design principles of field transistor devices.

Luoyang Tech Co. Ltd. (Hexagonal boron Nitride Manufacturer) has over 12 years' experience in chemical products development and research. Send us an inquiry if you're looking for Hexagonal Boron Nitride of the highest quality.

Inquiry us

Our Latest Products

High Efficiency Oxygen Molecular Sieve OX480

This oxygen molecular sieve, TR-OX480, is mostly used in oxygen concentrators sieve beds for PSA oxygen production plants and medical center oxygen supply networks. About Oxygen Molecular Sieve OX480:Oxygen molecular sieve OX480 product is designe…

Metal Alloy W-Cu Alloys Bar Custom Size Tungsten Copper Alloy Rod

Tungsten-copper rod is an alloy of tungsten, copper and other elements. Copper content in commonly-used alloys ranges from 10% to 50%. Powder metallurgy is used to prepare the alloy. The alloy has high electrical and thermal conductivity. About Me…

Activated Aluminium Oxide

This product can be classified as X-r Type Activated alumina Desiccant. The appearance of the product is a white pellet. About the Activated Aluminum Oxide It is activated aluminum desiccant X-r, and the product's appearance is white. Tru…

0086-0379-64280201 brad@ihpa.net skype whatsapp