News

  • 0
  • 0

Water-reducing agent solution for these three

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



The water-reducing agent should be used with concrete admixture, which will reflect the water reduction effect. Cement quality is therefore a direct factor of the actual effect water-reducing agents.

The following strategies are to be used when encountering "problem" cements:

High alkali cement

A cement that contains a lot of alkali is called high-alkali. Alkali in high-alkali is usually higher than that of conventional cement.

The high-alkali cements have a high degree of alkalinity. This can impact the performance. High-alkali Cement can encourage the setting reaction, which is beneficial to the early development of strength in concrete. High-alkali Cement can also increase the fluidity of cement, making it more workable and easier to pump.

But there are also some issues with high-alkali clinkers. As an example, high alkali cements can reduce the efficiency of water-reducing agents and cause concrete to lose its slump faster. High-alkali cement may also lead to corrosion and carbonation problems in concrete.

High-alkali Cement can benefit from water-reducing agents that contain a higher content of sodium sulfate. High-alkali cement contains a high amount of alkali, which accelerates C3A's dissolution. Sodium sulfate reacts with C3A, forming AFt crystalline structures and improving the fluidity of the cement mortar.

Low-alkali sulfur-deficient cement

Low alkali-sulfur cement has less sulfate in it than normal cement. Ordinary cement is high in sulfate. It reacts with water and the sulfate forms crystals that cause cracking.

Reduced sulfate cement reduces the impact of the Alkali-aggregate Reaction (Alkali-Cement reaction) by reducing sulfate in the cement. The alkali silica reaction is a reaction between the silicates and alkalis of the cement. It causes cracking and expansion in concrete. The use of low-alkali cements that are sulfur-deficient can help reduce this reaction, and increase the durability and life of the concrete.

Due to the lower sulfate contents, water reducers work less well with low alkali-sulfur cement. Water-reducing agents can cause concrete to lose slump quickly if they are used in excess. In this case, the conventional method of using water-reducing agents may not work. Instead, it is best to choose a water reducing agent that contains sulfate.

High C3A cement content

Cement with a high C3A-content is one that has a higher content of C3A. C3A is a mineral present in cement, which reacts to water and forms an expansive substance. C3A cements are characterized by a high early strength as well as a shorter setting time. They are ideal for projects that call for rapid setting.

Cement with high C3A levels can cause some problems. C3A and sulfate react to form sulphoaluminate. This can cause concrete to expand or crack. In humid environments, cements high in C3A are susceptible to producing corrosive calcium-sulfate precipitates, which can have a negative impact on the durability of concrete and steel structures.

Cement containing high C3A has a higher adsorption rate of water-reducing agents. This will result in fewer fluidity and slump properties of concrete. If you are using a water-reducing chemical, choose a water-reducing agent that has a high sulfate content or a retarder which contains hydroxycarboxylate. These will help reduce C3A adsorption and improve concrete fluidity.

There are two types of products that reduce water: a water-reducing naphthalene agent and a water-reducing polycarboxylic agent. The main difference in water reduction is the naphthalene. It is high-efficiency, and polycarboxylic is high-performance. For general foam concrete, the naphthalene cubic addition is between a few hundred g to a kilogram.

Inquiry us

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

Supply Magnesium Granules Mg Granules 99.95%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Magnesium Diboride MgB2 Powder CAS 12007-25-9, 99%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

Our Latest Products

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Molybdenum powder is made of a combination of molybdenum with boron. The chemical formula for molybdenum is MoB2, and the molecular weight is 202.69. Purity: >99%Particle size: 5- 10um Molybdenum Boride MoB2 Pulp : Molybdenum-boride, is a molybdenu…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal…

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Tungsten-nickel-copper/iron alloy is characterized by low thermal expansion, high density, radiation absorption and high thermal and electrical conductivity. It is widely utilized in the aerospace and medical industries. About High Density Tungsten…